Low-Rank Representation of Both Singing Voice and Music Accompaniment Via Learned Dictionaries

نویسنده

  • Yi-Hsuan Yang
چکیده

Recent research work has shown that the magnitude spectrogram of a song can be considered as a superposition of a low-rank component and a sparse component, which appear to correspond to the instrumental part and the vocal part of the song, respectively. Based on this observation, one can separate singing voice from the background music. However, the quality of such separation might be limited, because the vocal part of a song can sometimes be lowrank as well. Therefore, we propose to learn the subspace structures of vocal and instrumental sounds from a collection of clean signals first, and then compute the low-rank representations of both the vocal and instrumental parts of a song based on the learned subspaces. Specifically, we use online dictionary learning to learn the subspaces, and propose a new algorithm called multiple low-rank representation (MLRR) to decompose a magnitude spectrogram into two low-rank matrices. Our approach is flexible in that the subspaces of singing voice and music accompaniment are both learned from data. Evaluation on the MIR-1K dataset shows that the approach improves the source-to-distortion ratio (SDR) and the source-to-interference ratio (SIR), but not the source-to-artifact ratio (SAR).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separation of Singing Voice from Music Background

Songs are representation of audio signal and musical instruments. An audio signal separation system should be able to identify different audio signals such as speech, background noise and music. In a song the singing voice provides useful information regarding pitch range, music content, music tempo and rhythm. An automatic singing voice separation system is used for attenuating or removing the...

متن کامل

Singing Voice Separation from Monaural Recordings

Separating singing voice from music accompaniment has wide applications in areas such as automatic lyrics recognition and alignment, singer identification, and music information retrieval. Compared to the extensive studies of speech separation, singing voice separation has been little explored. We propose a system to separate singing voice from music accompaniment from monaural recordings. The ...

متن کامل

A Singing Voice Removal System Using Spectral Energy Comparison

Separating technique for singing voice from music accompaniment is very useful in original sound type Karaoke instrument. We propose a real-time system to separate singing voice from music accompaniment for stereo recordings. Proposed algorithm consists of two stages. The first stage is a spectral change detector. The last stage is a selective vocal separation in frequency bins. Listening tests...

متن کامل

Chord Recognition Based on Temporal Correlation Support Vector Machine

In this paper, we propose a method called temporal correlation support vector machine (TCSVM) for automatic major-minor chord recognition in audio music. We first use robust principal component analysis to separate the singing voice from the music to reduce the influence of the singing voice and consider the temporal correlations of the chord features. Using robust principal component analysis,...

متن کامل

Singing Voice separation from Polyphonic Music Accompanient using Compositional Model

There are abundant real time applications for singing voice separation from mixed audio. By means of Robust Principal Component Analysis (RPCA) which is a compositional model for segregation, which decomposes the mixed source audio signal into low rank and sparse components, where it is presumed that musical accompaniment as low rank subspace since musical signal model is repetitive in characte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013